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Abstract 
In active vibration isolation systems direct velocity feedback may be used. A particular approach in this 

framework is known as “skyhook damping”. Skyhook damping is implemented by using a velocity sensor 

mounted on the receiving body whose output is used to drive a force actuator reacting between the source 

and the receiving bodies through a feedback gain. In such an arrangement the velocity sensor is collocated 

with the component of the actuator force acting on the receiving body. The other component reacting against 

the source body lacks a collocated sensor. If the fundamental natural frequency of the receiving body is 

lower than the fundamental natural frequency of the source body, the feedback loop exhibits unconditional 

stability and can generate significant vibration isolation effects in a broad band of frequencies. If the 

situation is opposite, the feedback loop becomes conditionally stable and only limited feedback gains can 

be implemented. This results in poor vibration isolation effects. However, if an inerter with a large enough 

inertance is used in the isolator suspension, the feedback loop becomes unconditionally stable and 

performant again. In this paper it is calculated using a lumped parameter model of the general vibration 

isolation problem that the minimum inertance to stabilise the feedback loop equals the stiffness of the 

isolator spring times the squared natural frequency of the source body. Furthermore, it is shown that time-

averaged kinetic energy of the receiving body monotonically reduces with the increase of the feedback gain.  

1 Introduction 

An appealing property of inerters is that they can be designed and realised in practice having their inertance 

significantly larger than their mass [1], [2]. Adding the inerter to classical dampers and springs fills an empty 

niche enabling a complete synthesis of passive mechanical networks [1], [2]. This opens many interesting 

possibilities so that many authors reported on how to design and use inerters to suppress mechanical 

vibrations [1]–[10].  

For example, inerters can be very useful in vibration absorber systems. The performance of dynamic 

vibration absorbers is known to very much depend on the proof mass added to a primary structure to reduce 

its vibration. This mass is added to structures exclusively to control their vibrations, so it is penalised in 

lightweight automotive and aerospace applications [11]. In this context, the use of inerter elements can be 

interesting given the fact that their inertance can be significantly larger than their mass. Consequently a 

number of new concepts have arisen. These include tuned inerter damper (TID), tuned mass–damper–inerter 

(TMDI), and inerter–based dynamic vibration absorber (IDVA) [12]–[16]. In these systems the working 

frequency of the absorber can be tuned by changing the inertance. In particular, it can be reduced without 

increasing the physical mass of the vibration absorber while preserving the static stiffness of the absorber 

suspension spring. Various applications have been considered using tuned inerter dampers including 

vibration reduction of cables in cable-stayed bridges [13].  

Dynamic vibration absorbers can be made active. Active vibration absorbers can be realised using proof-

mass actuators implementing a velocity or velocity + displacement feedback control loop [17]–[21]. 

Normally, active vibration absorbers must be designed with a low mounted natural frequency [18], [19], 

mailto:nalujevic@fsb.hr


[22]. This requires either a large proof mass or soft suspension stiffness. Both is hard to realise in practice 

since the mass must not be too large as this would add too much weight to the structure, and the stiffness 

cannot be too small due to large sags in case of constant accelerations (gravity, vehicle manoeuvring). The 

need for soft suspension also limits the applicability of co-rotating proof-mass actuators for vibration control 

of structures rotating at a high speed which exposes the proof mass to large centrifugal forces [23]–[25]. 

This problem can be overcame by using an inerter between the proof mass and the structure under control. 

In such a way the natural frequency may be decreased without significantly increasing the weight of the 

system and without using excessively soft suspension springs. 

Inerters can also be very useful in vibration isolation systems. In this sense, many authors focused their 

efforts on improving vehicle suspension systems using inerters [2], [29], [30]. Further applications of 

inerters include vibration isolation in civil engineering structures, such as multi-storey buildings under 

earthquake base excitation [31]. In vibration isolation problems it is often necessary to tune the impedance 

of the isolator elements based on some optimisation criteria. This can be done by either minimising maxima 

of the response (H∞ optimisation), or by minimising the energy in the response signals (H2 optimisation) 

[32]. 

In this paper the benefits of using inerter in an active vibration isolation problem are considered. It is shown 

that the use of an inerter in the isolator can significantly improve the stability and performance of the active 

vibration isolation system in certain situations. In particular, it is shown analytically on a simplified model 

problem that the use of inerter enables successful active vibration isolation in a family of mechanical systems 

that are otherwise difficult to control. This family of system has been referred to as subcritical 2 DOF 

systems. Subcritical systems are those characterised by the natural frequency of the receiving body larger 

than the natural frequency of the source body. In such vibration isolation problems the use of inerter is 

shown to stabilise the feedback loop and therefore to enable a remarkable active vibration isolation effect.  

The paper is structured into three sections. In the second section, the model problem is presented and the 

corresponding mathematical formulation is given. In Section 3 a comprehensive stability analysis of the 

active vibration isolation scheme is given. This analysis indicates the subcritical family of vibration isolation 

systems that requires the use of inerters in the isolator to have stable and performant active vibration isolator. 

In Section 4 the performance of the active vibration isolation system is discussed through its ability to reduce 

the mean kinetic energy of the receiving body. In each system, tuneable parameters are adjusted in order to 

minimise the kinetic energy of the receiving body per unit, spectrally white, dynamic excitation of the source 

body.  

2 Mathematical model 

In this section mathematical model of an inerter-based active vibration isolation system is formulated. As 

shown in Figure 1, the problem studied is represented by a lumped parameter two degree of freedom (DOF) 

mechanical system. The system consists of two masses m1 and m2 coupled by a spring k2, a viscous damper 

c2 and an inerter of inertance b2. The inerter produces a force proportional to the relative acceleration 

between masses m1 and m2. The two masses are attached to fixed reference bases via the two mounting 

springs k1 and k3. The lower mass m1 is excited by the disturbance force F1. It is assumed that the force F1 

has characteristics of an ideal white noise and that the power spectral density (PSD) of the force equals one 

over all frequencies. 

The purpose of the vibration isolation system is to reduce vibrations of mass m2 which are due to the forcing 

F1 acting on mass m1. Therefore, a structure approximated by mass m1 and spring k1 is referred to as the 

source body, and a structure characterised by the mass m2 and stiffness k3 is referred to as the receiving body 

(Figure 1).  

Such a lumped parameter approximation may be representative of a system of more complicated nature, 

incorporating structures with distributed mass and stiffness parameters. For example, modal mass and 

stiffness of the fundamental mode of a flexible rectangular source panel can be represented through mass 

m1 and stiffness k1. Similarly, mass m2 and stiffness k3 can represent modal mass and stiffness corresponding 

to the fundamental mode of a flexible radiating panel. Finally, the stiffness k2 between the two masses could 



represent a coupling impedance associated with the breathing mode of an air cavity between the two panels. 

In such a way the simplified 2 DOF model could be used to describe the low-frequency dynamic behaviour 

of acoustically coupled double panels as discussed in, for example [33]. Other systems may also be 

representable by the general configuration shown in Figure 1, such as those discussed in [17], [34]–[36]. In 

case a more detailed and accurate analysis is required, attention should be paid to the influence of higher 

order residual modes, see for example [6]. 

 

Figure 1. The two degree of freedom active vibration isolation system 

The active part of the vibration isolation system is realised through a skyhook damping unit [35], [37]. The 

skyhook damper consists of a reactive actuator, a velocity sensor, and a feedback loop between the output 

of the sensor and the input to the actuator. The actuator is mounted in parallel with the passive part of the 

isolation system (spring, dashpot and inerter) with its terminals also attached to the two masses, Figure 1. 

The velocity sensor is mounted onto mass m2 in order to realise a disturbance rejection control scheme. In 

this scheme the actuator is driven with a signal proportional to the negative absolute velocity of the receiving 

body amplified by a constant control gain g. Idealised sensor-actuator transducers are assumed. Thus the 

feedback gain g has physical dimension of Ns/m and could be referred to as the active damping coefficient. 

Practical velocity sensors are normally realized using standard accelerometers with time-integrated outputs. 

The cut-off frequency of the integration circuit is usually chosen low, so that in the frequency range between 

the cut-off frequency of the integrator and the blocked natural frequency of the accelerometer, the time-

integrated output of the accelerometer is proportional to velocity [17], [18]. Also, an advanced MEMS 

velocity sensor with internal velocity feedback that could be used for this purpose has been proposed in 

[38]. 

The actuator force FA is given by 
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The equations of motion are 
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Equations of motion Eq. (2a,b) can be written in the matrix form as 

   Mx Cx Kx F , (3) 

 



where M is the mass matrix, K is the stiffness matrix, C is the damping matrix, x(t),  tx  and  tx  are the 

displacement, velocity and acceleration column vectors respectively, and F(t) is excitation column vector. 

These matrices/vectors are given by the following expressions 
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where the parameters/functions in the matrices/vectors are as indicated in Figure 1. Note that the gain g 

generates diagonally asymmetric active damping terms in the system damping matrix C. Throughout this 

study, the damping of the source and receiving structures is assumed to be light. Thus the effects of dampers 

between the source mass m1 and the ground and between the receiving mass m2 and the ground are neglected 

i.e. c1 ≈ c3 ≈ 0. This enables significantly less complex mathematical derivations in the forthcoming parts of 

the study. Furthermore it leads to a more transparent model regarding the physics governing the system 

dynamical behaviour. 

Assuming a simple harmonic excitation and expressing the excitation and the steady-state response in the 

exponential form   jˆ tt e F F  and 
jˆ te x x , where j 1  , Eq. (3) can be written as 

      j j j  S x F , (6) 

where S(jω) is the dynamic stiffness matrix with the following form 

   2j j     S M C K . (7) 

Solution of Eq. (6) can be obtained by inversion of the dynamic stiffness matrix S(jω) as 

      1j j j  x S F . (8) 

Differentiating Eq. (8) in order to obtain velocities results in expression 

      j j j  x Y F , (9) 

where    j j j  x x  is the velocity vector and    1j j j  Y S  is the mobility matrix representing 

four frequency response functions (FRFs) between velocities and forces. By taking M, K and C matrices 

from Eq. (4a-c), the steady-state complex response can be expressed in terms of the two driving points and 

two transfer mobilities as 
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where 
ij i jY x F  is a mobility function of the system, representing a velocity of the mass i due to a unit force 

at the mass j. If i = j then the corresponding FRF is referred to as a driving point mobility, otherwise it is a 

referred to as a transfer mobility. 

The transfer mobility Y21, representing the velocity response of the receiving body per unit forcing of the 

source body, is used to assess the quality of the vibration isolation throughout this paper. With the aim of 

more general approach, mobility Y21 in Eq. (10c) can be expressed in the following dimensionless form 
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where coefficients A0...A4 and B0…B3 are given by 
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and 
1 2121 1m Y   is now the dimensionless transfer mobility. Throughout the rest of the paper, it is assumed 

that m1 and Ω1 are constant values, used for scaling the transfer mobility function Y21 to convenient 

dimensionless form. In Eqs. (13a-g), α and β are squared natural frequency ratios, η2 is the damping ratio, λ 

is the feedback gain normalised with respect to the passive damping coefficient, and μ1 and μ2 are the mass 

and inertance ratios respectively. Furthermore, Ω is dimensionless circular frequency normalised with 

respect to the natural frequency of the uncoupled source body Ω1 (as if the source body was uncoupled by 

removing spring k2), Ω3 is the natural frequency of the uncoupled receiving body (as if the receiving body 

was uncoupled by removing spring k2), and Ω2 is the natural frequency of the receiving body as if it was 

attached to a fixed reference base through the spring of stiffness k2 only. The three natural frequencies 

Ω1…Ω3 are thus 
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Given that the excitation force F1 with unit PSD has been assumed, the specific kinetic energy of the 

receiving body (per unit mass, per unit excitation force) can be calculated as 
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The specific kinetic energy index Ik
 
is used throughout this study as a measure of the performance of broad 

frequency band vibration isolation. The objective of the active vibration isolation system is to minimise this 

quantity. 

The specific kinetic energy index in Eq. (15) can according to [39] be calculated as 
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Substituting coefficients A0...A4 and B0…B3 from Eq. (12) into Eq. (16) yields 
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In the remaining parts of the paper, two types of vibration isolation systems are studied and compared with 

respect to their performance in minimising the kinetic energy index Ik. These are the active control system 

without inerter and the active control system with inerter. First, stability properties of the feedback loop are 

discussed for the two types of active vibration isolation systems: without and with the inerter. Second, the 

performance of the two active vibration isolation systems are analysed.  

3 Stability 

3.1 Stability in general 

With the frequency domain analysis, the stability of active control systems cannot be seen directly from the 

frequency response of the system. In other words, the model presented in Section 2 mathematically allows 

for calculating frequency response functions using Eqs. (10) for both stable and unstable systems. However, 

such FRFs for unstable systems would be physically meaningless. It is thus necessary to carefully investigate 

the active control system stability properties before calculating the prospective performance metrics, such 

as the kinetic energy index given by Eq. (16). It has previously been shown that active vibration isolation 

systems can exhibit stability problems as discussed in for example [17], [34], [40], [41]. In this subsection, 

the stability of the feedback control loop is studied with reference to the dimensionless active damping 

coefficient λ by applying the Routh-Hurwitz stability criterion to the characteristic equation of the system. 

The characteristic equation is the denominator of Eq. (11).  

According to the Routh-Hurwitz necessary stability condition and Eq. (12) in order for A1,3 > 0, it must be 

  11 1        in order for A1 > 0, (18) 

  11 1        in order for A3 > 0. (19) 

In other words, if β < 1 the condition A1 > 0 is a stricter one and if β > 1, then A3 > 0 is the stricter condition. 

Considering now the Routh-Hurwitz sufficient condition for stability, it states that all diagonal sub-

determinants H1, H2 and H3, as well as the main determinant H4 of Hurwitz matrix must be positive. The 



principal determinant H4 is proportional to the sub-determinant H3 with an always positive term 

1 1( ( 1) )      and is thus automatically positive if H3 is positive. Thus the relevant criteria that must be 

satisfied simultaneously are Eqs. (18) and (19) plus the following additional ones 

 
1 10 1 0H       , (20) 

      1 2 1 2 1 12 0 2 1 1 0(2 )H                        
, (21) 

         2 2 2

3 1 2 2 2 1 1 10 4 1 1 1 1 0H                           . (22) 

Note that A1, A3, H1 and H2 are linear functions of the dimensionless feedback gain λ, whereas H3 is a 

quadratic function of λ. The quadratic determinant H3 changes sign at the following values of the feedback 

gain 
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In the forthcoming discussion, it is shown that by ensuring the validity of inequality (22), all other stability 

conditions are satisfied automatically. In other words, the condition (22) is a sufficient stability condition 

for the problem studied. 

3.2 Stability without inerter – subcritical and supercritical systems 

If the inerter is not used, i.e. μ2 = 0, Eqs. (23a,b) can be simplified to 
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
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 , (24a,b) 

where λ1 is the lower value out of two zeros. At this point it is convenient to graphically represent all 

expressions relevant for the system stability as a function of the dimensionless feedback gain λ. This is done 

in Figure 2. Two different cases are presented. Figure 2(a) shows the case when the squared natural 

frequency ratio β < 1 and Figure 2(b) shows the case with β > 1.  

(a) 

 

(b) 

 

Figure 2: Hurwitz coefficients H1 (solid line), H2 (dashed line), H3 (dash-dotted line) and A1 (dotted line) 

plotted against the active damping ratio λ without inerter: (a) β < 1, (b) β > 1 



The parameters of an example system shown in Figure 2(a) are α = 2, μ1 = 1/2, η2 = 1 and β(a) = 1/2, and the 

parameters for an example system shown in Figure 2(b) are the same, except β(b) = 5. The zeros of the 3rd 

principal diagonal minor H3 from Eqs. (24a,b) are denoted by the two circles. In both plots can be seen that 

if the principal diagonal minor with the quadratic dependence on the feedback gain is positive, i.e. 
3 0H  , 

then all other stability conditions are automatically satisfied. In fact, by closely inspecting Eqs. (18-22) it 

could be deduced that it is generally true that if H3 > 0 then all other conditions, i.e. Eqs. (18-21), are 

automatically satisfied and the stability is guaranteed. Thus Eq. (22) represents the strictest stability 

condition and it becomes sufficient to make sure that H3 > 0 in order to have a stable feedback loop. 

Physically this indicates that if the uncoupled natural frequency of the source body is larger than the 

uncoupled natural frequency of the receiving body, then a negative velocity feedback loop with an arbitrary 

large feedback gain can be used. As discussed in the forthcoming Section 4.1, this is a situation in which 

very convincing active vibration isolation effects can be achieved. On the other hand, in situation in which 

the uncoupled natural frequency of the source body is smaller than the uncoupled natural frequency of the 

receiving body, as shown in Figure 2(b), the range of dimensionless feedback gains is limited between λ1 

and λ2, according to Eq. 24. Therefore, the maximum feedback gain is limited by λ2 above which the second 

order principal diagonal minor becomes negative with further increasing the feedback gain. This is because 

the parabola in Figure 2(b) is oriented downwards whereas the parabola in Figure 2(a) is oriented upwards. 

This situation results in a limited active vibration control performance as discussed in the forthcoming 

section 4.1. 

In conclusion, it can be stated that all systems representable by the scheme in Figure 1 can be divided into 

two families. The first family can be referred to as supercritical and it is characterised by β < 1. The systems 

belonging to this group allow for the implementation of unconditionally stable active vibration isolation 

scheme based on the direct feedback of the absolute velocity of the receiving body. The second family is 

characterised by β > 1 and it can be referred to as subcritical. The systems belonging to this group do not 

allow for the implementation of unconditionally stable absolute velocity feedback scheme. On the contrary, 

the feedback loop is conditionally stable with a limited maximum feedback gain. 

Practical vibration isolation problems belonging to the supercritical family are the problems of isolating 

vibrations coming from a flexible base towards sensitive equipment mounted on the base. A practical 

problem belonging to the subcritical group could be a problem in which running machinery is elastically 

mounted on the flexible base, for example a punching press. In such case, the broadband vibrations 

originating from the impact, transmit from the machine to the base. It appears from the above analysis that 

it would be significantly more difficult to guarantee the stability of the absolute velocity feedback control 

applied on the latter, subcritical family of vibration isolation problems. Given these difficulties, it is 

interesting to investigate the effects of the use of an inerter with subcritical systems characterised by β > 1. 

This investigation is carried out in the following subsection. 

3.3 Stability with inerter – stabilising the feedback loop in a subcritical system 

If an inerter is used in an isolator of a subcritical system characterised by β > 1, then interesting effects can 

be observed with regard to the stability of the feedback loop. By inspecting Eq. (22), it can be seen that the 

third principal diagonal minor H3, which is essential for the stability of the active control, has the quadratic 

coefficient in λ equal to μ2 – α. This coefficient determines whether the corresponding parabola is pointing 

upwards or downwards. Given that the term (β – 1) multiplying the squared bracket expression is positive 

with subcritical systems, it turns out that an inerter with dimensionless inertance μ2 > α can make the 

quadratic coefficient of the parabola positive. This in turn results in an upward pointing parabola. Therefore 

unconditional stability can be achieved also with subcritical systems simply by adding an inerter with μ2 > 

α. This is illustrated in Figure 3 which shows all principal diagonal minors calculated according to Eqs. (20

-22). The system is again characterised by α = 2, μ1 = 1/2, η2 = 1 and β = 5, just like in Figure 2(b). As shown 

in Figure 3(a), with the inclusion of inerter when β > 1 and μ2(a) = α/2, the limited stable range of λ between 

λH1 < λ < λH2, is expanded in comparison with Figure 2(b). If the inertance is further increased, so that μ2 = 2α, 

the system becomes stable for any λ > λH2, as shown in Figure 3(b). Therefore, for subcritical systems where 

the fundamental natural frequency of the receiving body is larger than that of the source body, the use of 



inerter characterised by μ2 > α drastically improves the stability by turning a subcritical active vibration 

isolation problem into a supercritical one. This is quite essential for the performance of the active vibration 

isolation, as discussed in the following Section 4. 

(a) 

 

(b) 

 

Figure 3: Hurwitz coefficients H1 (solid line), H2 (dashed line), H3 (dash-dotted line) and A1 (dotted line) 

plotted against the active damping ratio λ with inerter and with β > 1: (a) μ2 < α, (b) μ2 > α 

4 Performance 

4.1 Without inerter 

The performance of the active control is first studied without the use of inerter, therefore dimensionless 

parameter μ2 equals zero. Figure 4(a) shows the specific kinetic energy index of the receiving body plotted 

as a function of the passive and active damping ratio.  

(a) 

 

(b) 

 

Figure 4. Active vibration isolation system performance without inerter b2 (μ2 = 0) and β < 1: (a) Specific 

kinetic energy index Ik, (b) Transfer mobility function  21 j  , λ = 0 (solid line), λ = 2 (dashed line), λ = 

10 (dash-dotted line), λ = 20 (dotted line) 



Firstly, a supercritical system is assumed so the frequency ratio β is smaller than one. Figure 4(a) indicates 

that as the active damping ratio (the feedback gain) is increased, the kinetic energy index monotonically 

decreases demonstrating that the desired active vibration isolation effect is achieved. Figure 4(b) shows the 

dimensionless transfer mobility function (the velocity of the receiving body per unit forcing of the source 

body, as a function of frequency) for increasing active damping ratios. It can be seen that the amplitude of 

the dimensionless transfer mobility function  21 j   diminishes in the vicinity of Ωn1 and Ωn2 which is 

tied to significant reduction of the receiving body specific kinetic energy Ik. In addition, no increase of the 

amplitude of the mobility with an increase in the feedback gain can be seen at any frequency. Thus a true 

broadband active vibration isolation effect can be achieved. The characteristic parameters of the example 

system illustrated in Figure 4(a) are α = 1/2, β = 1/2 and μ1 = 1/2. Parameters of the example system shown 

in Figure 4(b) are the same, except that the damping ratio had to be fixed to η2 = 0.5 %. Therefore in such a 

supercritical system, the use of inerter appears to be unnecessary, since the system is stable for any given 

positive value of λ. 

Considering now the subcritical case, where β > 1, the system is stable for a limited narrow λ - range as 

already discussed in Section 3.1 and as shown in Figure 2(b). Therefore it is interesting to investigate into 

performance of the active control for subcritical systems when the stable feedback gain is restricted between 

the lower and upper margins shown in Figure 2(b). 

The kinetic energy index of the receiving body in this case (β > 1) is shown in Figure 5(a). The parameters 

of the example system shown in Figure 5(a) are α = 1/2, β = 2 and μ1 = 1/2. It can be seen the figure that 

there is an optimum combination of the passive and active damping ratios that minimises the kinetic energy 

index which is marked by the red circle. 

(a) 

 

(b) 

 

Figure 5: Active vibration isolation system performance without inerter b2 (μ2 = 0) and βII > 1: (a) Specific 

kinetic energy index Ik, (b) Transfer mobility function  21 j  , λ = 0 (solid line), λ = 0.5 (dashed line), λ 

= 1 (dash-dotted line), λ = 1.5 (dotted line) 

The optimum passive damping ratio as a function of the active damping ratio is shown by the red dashed 

line in the plot (a). This function can be calculated by differentiating Eq. (17) with respect to λ and equalling 

with zero which yields the following relation: 

 1 1
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2 1


  


 

 





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Eq. (25) is denoted by the dashed line in Figure 5(a). By substituting Eq. (25) into Eq. (17), the expression 

for minimum specific kinetic energy along the dashed line can be obtained 
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By differentiating Eq. (26) with respect to λ, equalling with zero and solving for λ, optimal active damping 

coefficient λopt may be obtained. Inserting both η2opt,λ from Eq. (25) and λopt into Eq. (17) yields an expression 

for minimum specific kinetic energy Ik. However, the relations for λopt, η2opt, and Ik are too cumbersome and 

not easily interpretable, so they are omitted here. Nevertheless, the global minimum position for Ik with 

respect to two variables λopt and η2opt,λ2 exists and it is denoted by the circle in contour plot. The asterisk in 

Figure 5.(a) denotes the minimum kinetic energy index if value of λ is set to zero, which implies the use of 

optimised passive control. By comparing the surface levels in Figure 5(a) at the optimum active control 

(circle) and the optimum passive control (asterisk) it can be seen that the level difference is about one dB. 

Therefore, the active control can outperform the passive control, but the corresponding improvement in 

performance is not particularly convincing. It can be concluded that with subcritical system the performance 

of the active vibration scheme is questionable, since a significantly simpler passive system can achieve 

nearly the same vibration isolation effect. The reasons for this are further investigated by plotting the 

dimensionless transfer mobility  21 j   as a function of frequency for cases with no control (λ = 0) and 

with the active control using increasing active damping ratios (increasing feedback gains) in Figure 5(b). 

The parameters for the example system shown in Figure 5(b) are the same as those in Figure 5(a), except 

that a fixed passive damping ratio η2 = 0.02 is used. It can be seen in Figure 5(b), that although the amplitude 

of the dimensionless mobility  21 j   reduces in the vicinity of second natural frequency Ωn2 with rising λ, 

a significant overshoot can be observed in the vicinity of first natural frequency Ωn1 for rising λ. Figure 5(a) 

shows that for rising λ, the specific kinetic energy Ik also rises significantly until instability occurs. 

Therefore, using active control without inerter in cases when β > 1 results in generally doubtful performance. 

Figure 6(b) shows the comparison between the optimum active vibration isolation and the optimum passive 

vibration isolation for a subcritical system characterised by α = 1/2, β = 2 and μ1 = 1/2 in terms of the 

amplitude of the transfer mobility plotted as a function of frequency. 

(a) 

 

(b) 

 

Figure 6: Active vibration isolation system performance without inerter b2 (μ2 = 0) and β > 1: (a) Specific 

kinetic energy index Ik, (b) Transfer mobility function  21 j  , λ = 0, η2 = η2opt1 (solid line), λ = λopt, 

η2 = η2opt (dashed line) 

*



The same parameters are used in Figure 6(a) where the passive damping ratio is set to η2 = 0.02. The 

optimised active control results in a slightly lesser kinetic energy index compared to the optimised passive 

control, which is obtained by damping down the velocity response around the first natural frequency at the 

expense of slightly increasing the response around the second natural frequency, Figure 6 (b). However, the 

improvement in performance due to the use of active control probably does not justify the complexity of the 

active vibration isolation system. 

4.2 With inerter 

Figure 7(a) shows the specific kinetic energy Ik of the receiving body plotted as a function of the active 

damping ratio λ of a subcritical system characterised by α = 1/2, β = 2, μ1 = 1/2 and η2 = 0.01, equipped with 

an inerter of inertance μ2 = 2. Therefore an inertance large enough to stabilise the feedback loop is used (μ2 

> α). It can be seen that with an increase in the dimensionless feedback gain λ, the specific kinetic energy 

index monotonically decreases indicating that the desired vibration isolation effect is accomplished. 

(a) 

 

(b) 

 

Figure 7: Active vibration isolation system performance with inerter b2 (μ2 ≠ 0), β > 1 and μ2 > α: (a) 

Specific kinetic energy index Ik, (b) Transfer mobility function  21 j  , λ = 0 (solid line), λ = 5 (dashed 

line), λ = 10 (dash-dotted line), λ = 20 (dotted line) 

Figure 7(b) shows the amplitude of the dimensionless transfer mobility plotted against frequency for 

increasing feedback gains. Note the anti-resonance effect at frequencies below the first resonance, 

introduced by inerter. It can be seen that with the increase in the feedback gain, the receiving body response 

is decreased at either resonance frequency. The higher the gain, the lower is the velocity response. There 

can be seen no frequencies at which the increase of the feedback gain causes an increase of the response. 

Therefore, it can be concluded that the inclusion of the inerter in the active vibration isolation scheme with 

subcritical problems is essential in establishing stable and efficient active vibration isolation. It should be 

noted that the inerter can be seen from the control point of view as a relative acceleration feedback. In other 

words, subtracted outputs of two accelerometers mounted on the receiving and source bodies could 

theoretically be fed to the reactive actuator in addition to the existing velocity feedback in order to synthesize 

the inerter element actively. However, such derivative active vibration control has never been achieved in 

practice to the best of authors’ knowledge. It appears that the corresponding sensor-actuator frequency 

response function does not roll-off with frequency which causes very pronounced stability problems 

associated with high frequency poles, as discussed for example in [42]. It is therefore very useful in the 



present scheme to include the inerter as a passive element which mimics the effects of a relative acceleration 

feedback to reactive force actuator. 

5 Conclusions 

In this paper, a novel, inerter-based active vibration isolation system is presented. By investigating the 

stability of the active control when no inerter is used, it is found that there are two fundamental families of 

vibration isolation problems. With the first family (supercritical systems), which is characterised by the 

natural frequency of the uncoupled source body larger than the natural frequency of the uncoupled receiving 

body, large feedback gains can be used without compromising the stability of the feedback control system. 

This results in a convincing broadband vibration isolation effect. With the second family of systems 

(subcritical systems), the natural frequency of the uncoupled source body is below the natural frequency of 

the uncoupled receiving body. The range of stable feedback gains is limited which results in poor vibration 

isolation performance. However with the inclusion of the inerter, broadband active vibration isolation can 

also be achieved in the subcritical family of systems. Adding the inerter into the isolator effectively 

generates a sort of relative acceleration feedback that stabilises the control loop. In fact, it is analytically 

calculated in the paper that the minimum inertance to stabilise the loop is proportional to the stiffness of the 

isolator spring and inversely proportional to the squared natural frequency of the source body. It is important 

to mention that direct acceleration feedback would not be possible in practice due to very pronounced 

stability problems, therefore the passive element which mimics such feedback is very useful. 
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